Complementary Classifier Induced Partial Label Learning

Yuheng Jia^{1*}, Chongjie Si^{2*}, Min-Ling Zhang¹

¹School of Computer Science and Engineering, Southeast University

²MoE Key Lab of Artificial Intelligence, Al Institute, Shanghai Jiao Tong University

*Equal Contribution

{yhjia, zhangml}@seu.edu.cn, chongjiesi@sjtu.edu.cn

INTRODUCTION

• Insight:

- There are three kinds of priors that are useful for partial label learning, the correlations among instances, the mapping from instances to the candidate labels and non-candidate labels, I.e., complementary labels.
- The majority of the existing works overlook the valuable information in complementary labels. To fully take advantage of above mentioned priors, a novel PLL method named PL-CL is proposed.

• PL-CL:

- Construct an ordinary classifier and a complementary classifier.
- Design an adversarial term to link the outputs of the two classifiers.
- Construct an adaptive local topological graph shared by both the feature space and the label space

Contributions:

- We first propose a complementary classifier, which has never been studied in the partial label literature.
- We propose an adversarial term to link the ordinary classifier and the complementary classifier.
- We conducted extensive experiments to show the effectiveness of PL-CL.

METHOD

• PL-CL: Fig.1 shows the overall framework of PL-CL.

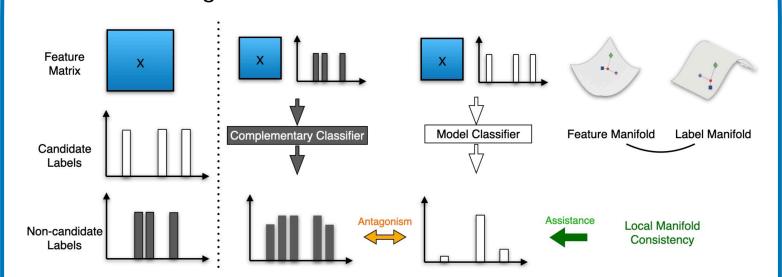


Fig.1 Overall Framework

• **PL-CL**: The loss function of PL-CL is shown as follows.

$$\min_{\substack{\mathbf{W}, \mathbf{b}, \hat{\mathbf{W}}, \hat{\mathbf{b}}, \\ \mathbf{P}, \mathbf{Q}, \mathbf{G}}} \|\mathbf{X}\mathbf{W} + \mathbf{1}_{n}\mathbf{b}^{\mathsf{T}} - \mathbf{P}\|_{F}^{2} + \beta \|\mathbf{1}_{n \times l} - \mathbf{P} - \mathbf{Q}\|_{F}^{2}
+ \alpha \|\mathbf{X}\hat{\mathbf{W}} + \mathbf{1}_{n}\hat{\mathbf{b}}^{\mathsf{T}} - \mathbf{Q}\|_{F}^{2} + \mu \|\mathbf{P}^{\mathsf{T}} - \mathbf{P}^{\mathsf{T}}\mathbf{G}\|_{F}^{2}
+ \gamma \|\mathbf{X}^{\mathsf{T}} - \mathbf{X}^{\mathsf{T}}\mathbf{G}\|_{F}^{2} + \lambda (\|\mathbf{W}\|_{F}^{2} + \|\hat{\mathbf{W}}\|_{F}^{2})
\text{s.t.} \quad \mathbf{P}\mathbf{1}_{q} = \mathbf{1}_{n}, \mathbf{0}_{n \times l} \leq \mathbf{P} \leq \mathbf{Y}, \hat{\mathbf{Y}} \leq \mathbf{Q} \leq \mathbf{1}_{n \times l}
\quad \mathbf{G}^{\mathsf{T}}\mathbf{1}_{n} = \mathbf{1}_{n}, \mathbf{0}_{n \times n} \leq \mathbf{G} \leq \mathbf{U}$$

EXPERIMENT

Comparison on synthetic datasets (win/tie/loss).

	I	II	III	IV	Total
SURE	22/6/0	26/2/0	26/2/0	24/4/0	88/14/0
PL-AGGD	26/2/0	25/3/0	23/5/0	22/6/0	96/16/0
LALO	27/1/0	24/4/0	26/2/0	22/6/0	99/13/0
IPAL	28/0/0	23/5/0	26/2/0	25/3/0	102/10/0
PLDA	28/0/0	28/0/0	28/0/0	28/0/0	112/0/0
PL-KNN	28/0/0	28/0/0	28/0/0	28/0/0	112/0/0

· Comparison on real-world datasets.

	Data set	FG-NET	Lost	MSRCv2	Mirflickr	Soccer Player	Yahoo!News	FG-NET(MAE3)	FG-NET(MAE5)
ſ	PL-CL	0.072 ± 0.009	0.709 ± 0.022	0.469 ± 0.016	0.642 ± 0.012	0.534 ± 0.004	0.618 ± 0.003	0.433 ± 0.022	0.575 ± 0.015
l	SURE	$0.052 \pm 0.006 \bullet$	$0.693 \pm 0.020 \bullet$	$0.445 \pm 0.021 \bullet$	$0.631 \pm 0.021 \bullet$	$0.519 \pm 0.004 \bullet$	$0.598 \pm 0.002 \bullet$	$0.356 \pm 0.019 \bullet$	$0.494 \pm 0.020 \bullet$
	PL-AGGD	$0.063 \pm 0.009 \bullet$	$0.683 \pm 0.014 \bullet$	$0.451 \pm 0.012 \bullet$	$0.610 \pm 0.011 \bullet$	$0.524 \pm 0.004 \bullet$	$0.607 \pm 0.004 \bullet$	$0.387 \pm 0.015 \bullet$	$0.530 \pm 0.015 \bullet$
İ	LALO	$0.065 \pm 0.009 \bullet$	$0.680 \pm 0.014 \bullet$	$0.448 \pm 0.015 \bullet$	$0.626 \pm 0.013 \bullet$	$0.523 \pm 0.003 \bullet$	$0.600 \pm 0.003 \bullet$	$0.423 \pm 0.020 \bullet$	$0.566 \pm 0.014 \bullet$
	IPAL	$0.051 \pm 0.011 \bullet$	$0.646 \pm 0.023 \bullet$	$0.488 \pm 0.031 \circ$	$0.527 \pm 0.009 \bullet$	$0.528 \pm 0.003 \bullet$	$0.625 \pm 0.004 \circ$	$0.349 \pm 0.019 \bullet$	$0.500 \pm 0.019 \bullet$
	PLDA	$0.042 \pm 0.005 \bullet$	$0.289 \pm 0.045 \bullet$	$0.422 \pm 0.013 \bullet$	$0.480 \pm 0.015 \bullet$	$0.493 \pm 0.003 \bullet$	$0.380 \pm 0.003 \bullet$	$0.150 \pm 0.012 \bullet$	$0.232 \pm 0.012 \bullet$
Ĺ	PL-KNN	0.036 ± 0.006 •	0.296 ± 0.021 ●	0.393 ± 0.014 •	$0.454 \pm 0.015 \bullet$	$0.483 \pm 0.005 \bullet$	$0.368 \pm 0.004 \bullet$	$0.288 \pm 0.013 \bullet$	0.440 ± 0.016 •

Comparison on transductive accuracy.

ſ	Data set	FG-NET	Lost	MSRCv2	Mirflickr	Soccer Player	Yahoo!News	FG-NET(MAE3)	FG-NET(MAE5)
ĺ	PL-CL	0.159 ± 0.016	0.832 ± 0.019	0.585 ± 0.012	0.697 ± 0.016	0.715 ± 0.002	0.840 ± 0.004	0.600 ± 0.023	0.737 ± 0.018
	SURE	0.158 ± 0.012	$0.798 \pm 0.019 \bullet$	$0.603 \pm 0.015 \circ$	$0.652 \pm 0.022 \bullet$	$0.700 \pm 0.003 \bullet$	$0.798 \pm 0.005 \bullet$	$0.590 \pm 0.018 \bullet$	$0.727 \pm 0.019 \bullet$
	PL-AGGD	$0.130 \pm 0.015 \bullet$	$0.804 \pm 0.016 \bullet$	$0.551 \pm 0.015 \bullet$	$0.653 \pm 0.015 \bullet$	$0.698 \pm 0.003 \bullet$	$0.817 \pm 0.005 \bullet$	$0.530 \pm 0.021 \bullet$	$0.679 \pm 0.024 \bullet$
	LALO	$0.153 \pm 0.016 \bullet$	$0.817 \pm 0.012 \bullet$	$0.548 \pm 0.009 \bullet$	$0.675 \pm 0.017 \bullet$	$0.698 \pm 0.003 \bullet$	$0.821 \pm 0.004 \bullet$	$0.592 \pm 0.024 \bullet$	$0.730 \pm 0.015 \bullet$
	IPAL	0.148 ± 0.021	$0.793 \pm 0.017 \bullet$	$0.680 \pm 0.013 \circ$	$0.586 \pm 0.007 \bullet$	$0.681 \pm 0.003 \bullet$	0.839 ± 0.003	$0.563 \pm 0.021 \bullet$	$0.698 \pm 0.022 \bullet$
l	PLDA	$0.042 \pm 0.005 \bullet$	$0.351 \pm 0.060 \bullet$	$0.479 \pm 0.015 \bullet$	$0.564 \pm 0.015 \bullet$	$0.493 \pm 0.004 \bullet$	$0.460 \pm 0.009 \bullet$	$0.150 \pm 0.012 \bullet$	$0.232 \pm 0.012 \bullet$
Į	PL-KNN	0.041 ± 0.007 •	$0.338 \pm 0.016 \bullet$	$0.415 \pm 0.013 \bullet$	$0.466 \pm 0.013 \bullet$	$0.504 \pm 0.005 \bullet$	0.403 ± 0.009 •	0.285 ± 0.016 •	$0.438 \pm 0.014 \bullet$

• Ablation study.

Classification Accuracy											
Kernel	Complementary Classifier	Graph	FG-NET	Lost	MSRCv2	Mirflickr	Soccer Player	Yahoo!News	FG-NET(MAE3)	FG-NET(MAE5)	Average
X	X	×	0.061 ± 0.006 •	0.622 ± 0.019 •	0.381 ± 0.015 •	0.249 ± 0.010 •	0.492 ± 0.003 •	0.430 ± 0.051 •	0.402 ± 0.031 •	0.551 ± 0.024 •	0.398
✓	X	×	0.060 ± 0.008 •	$0.654 \pm 0.019 \bullet$	$0.426 \pm 0.017 \bullet$	$0.533\pm0.012\bullet$	$0.515\pm0.010 \bullet$	$0.526 \pm 0.006 \bullet$	0.413 ± 0.026 •	0.564 ± 0.018 •	0.461
✓	×	✓	0.057 ± 0.009 ●	$0.705 \pm 0.023 \bullet$	$0.462 \pm 0.015 \bullet$	$0.637 \pm 0.011 \bullet$	$0.530 \pm 0.004 \bullet$	0.517 ± 0.046 •	0.416 ± 0.017 •	0.560 ± 0.019 •	0.485
✓	\checkmark	×	0.065 ± 0.008 •	$0.684 \pm 0.022 \bullet$	$0.456 \pm 0.014 \bullet$	$0.635 \pm 0.012 \bullet$	$0.529 \pm 0.003 \bullet$	0.607 ± 0.003 •	$0.426 \pm 0.024 \bullet$	0.566 ± 0.017 •	0.496
✓	✓	✓	0.072 ± 0.009	0.709 ± 0.022	0.469 ± 0.016	0.642 ± 0.012	0.534 ± 0.004	0.618 ± 0.003	0.433 ± 0.022	0.575 ± 0.015	0.507
					Transducti	ve Accuracy					
Kernel	Complementary Classifier	Graph	FG-NET	Lost	MSRCv2	Mirflickr	Soccer Player	Yahoo!News	FG-NET(MAE3)	FG-NET(MAE5)	Average
X	×	X	0.161 ± 0.017 ●	$0.729 \pm 0.017 \bullet$	$0.414 \pm 0.013 \bullet$	$0.464 \pm 0.008 \bullet$	$0.492 \pm 0.004 \bullet$	$0.439 \pm 0.003 \bullet$	$0.580 \pm 0.024 \bullet$	0.717 ± 0.022 •	0.499
✓	×	×	0.159 ± 0.012 •	$0.748 \pm 0.015 \bullet$	$0.515 \pm 0.018 \bullet$	$0.594 \pm 0.013 \bullet$	$0.700 \pm 0.004 \bullet$	$0.774 \pm 0.032 \bullet$	0.588 ± 0.021 •	0.726 ± 0.010 •	0.600
✓	X	✓	0.141 ± 0.011 •	$0.819 \pm 0.017 \bullet$	$0.572 \pm 0.013 \bullet$	$0.685 \pm 0.014 \bullet$	$0.714 \pm 0.002 \bullet$	$0.839 \pm 0.004 \bullet$	0.568 ± 0.025 •	0.706 ± 0.022 •	0.630
✓	\checkmark	×	0.150 ± 0.015 •	$0.824 \pm 0.021 \bullet$	$0.567 \pm 0.008 \bullet$	$0.687 \pm 0.012 \bullet$	0.701 ± 0.003 •	0.829 ± 0.004 •	0.570 ± 0.022 •	0.710 ± 0.021 •	0.629
✓	✓	✓	0.159 ± 0.016	0.832 ± 0.019	0.585 ± 0.012	0.697 ± 0.016	0.715 ± 0.002	0.840 ± 0.004	0.600 ± 0.023	0.737 ± 0.018	0.646

Code Link: https://cse.seu.edu.cn/2020/1114/c23024a353193/page.htm Chongjie Si: https://cse.seu.edu.cn/2020/1114/c23024a353193/page.htm Chongjie Si: https://cse.seu.edu.cn/2020/1114/c23024a353193/page.htm Chongjie Si: https://chongjiesi.site