

Introduction

Task: Partial label learning, each sample has several labels, among which only one is ground truth.

Intriguing Phenomena:

- Each candidate label's labeling confidence is likely to continually increase or decrease until convergence.
- A high-confidence false positive label may still have significant confidence later, risking incorrect identification of the true label.

Motivation:

- Correcting mislabeled samples for a PLL classifier itself is hard.
- Non-candidate label information is rarely investigated in PLL.

Contributions:

- We highlight two representative errors a PLL classifier may make, which has not been previously investigated in PLL
- We introduce a partner classifier based on non-candidate labels to better identify and correct mislabeled samples of a base classifier through a mutual supervision framework, which is applicable to all types of PLL approaches.
- We propose a novel collaborative term in the partner classifier, which links the base classifier and itself. Additionally, a blurring mechanism is introduced to add uncertainty to the outputs.

Partial Label Learning with a Partner

Chongjie Si¹, Zekun Jiang¹, Xuehui Wang¹, Yan Wang², Xiaokang Yang¹, Wei Shen¹ ¹MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University ²Shanghai Key Lab of Multidimensional Information Processing, ECNU

Framework:

Component:

- Base classifier: any existing F
- Update strategy: $\mathbf{P}_1 = \mathcal{T}_0 \left(\mathcal{G} \right)$
- Blurring mechanism:

•
$$\mathbf{Q}_1 = \phi\left(e^k \mathbf{P}_1\right) \odot \mathbf{Y}, \, \phi(x) = e^x$$

- Normalize \mathbf{Q}_1 to obtain \mathbf{O}_1
- Partner classifier with the collaborative term:

 $\min_{\hat{\mathbf{W}},\hat{\mathbf{b}},\mathbf{C}} \| \mathbf{X}\hat{\mathbf{W}} + \mathbf{1}_n \hat{\mathbf{b}}^\top - \mathbf{C} \|_F^2$ s.t. $\hat{\mathbf{Y}} \leq \mathbf{C} \leq \mathbf{1}_{n \times l}, \mathbf{C}\mathbf{1}_{l} = (l-1)\mathbf{1}_{n}$

Pipeline:

A partner classifier, built on non-candidate label data, facilitates mutual supervision with the base classifier. Each supervision stage updates labeling confidence using modeling output and applies a blurring mechanism. This output serves as supervision for interacting with the partner classifier, which operates similarly to the base classifier.

Method

PLL approach.
$$\mathcal{T}_{\mathbf{Y}}(\alpha \mathbf{P} + (1 - \alpha)\mathbf{M})$$

+
$$\gamma \operatorname{tr} \left(\mathbf{O}_{1} \mathbf{C}^{\mathsf{T}} \right) + \lambda \| \hat{\mathbf{W}} \|_{F}^{2}$$

AAAI-24 / IAAI-24 / EAAI-24

Experiment

Comparison with Stand-alone Methods:

Approaches	Data set							
Approaches	FG-NET	Lost	MSRCv2	Mirflickr	Soccer Player	Yahoo!News		
PL-CL	0.072 ± 0.009	0.710 ± 0.022	0.469 ± 0.016	0.647 ± 0.012	0.534 ± 0.004	0.618 ± 0.003		
PL-CL-PLCP	0.080 ± 0.009 $ullet$	$0.763\pm0.020ullet$	0.493 ± 0.013 (• $0.665 \pm 0.011 \bullet$	0.543 ± 0.002 •	0.625 ± 0.002 $ullet$		
PL-AGGD	0.063 ± 0.010	0.690 ± 0.020	0.451 ± 0.023	0.610 ± 0.012	0.521 ± 0.004	0.605 ± 0.002		
PL-AGGD-PLCP	0.076 ± 0.010 $ullet$	0.717 ± 0.020 \bullet	0.473 ± 0.017 (• $0.668 \pm 0.014 \bullet$	$0.534\pm0.005ullet$	0.609 ± 0.002 $ullet$		
SURE	0.052 ± 0.007	0.709 ± 0.022	0.445 ± 0.022	0.630 ± 0.022	0.519 ± 0.004	0.598 ± 0.002		
SURE-PLCP	0.076 ± 0.011 $ullet$	$0.719 \pm 0.019 \bullet$	0.460 ± 0.020 (• 0.657 ± 0.020 •	$0.527\pm0.004ullet$	0.606 ± 0.002 $ullet$		
LALO	0.065 ± 0.010	0.682 ± 0.019	0.449 ± 0.016	0.629 ± 0.016	0.523 ± 0.003	0.601 ± 0.003		
LALO-PLCP	0.076 ± 0.010 $ullet$	$0.701 \pm 0.019 \bullet$	0.453 ± 0.015 (• 0.647 ± 0.018 •	$0.529\pm0.004ullet$	$0.605\pm0.002ullet$		
PL-SVM	0.043 ± 0.008	0.406 ± 0.033	0.389 ± 0.029	0.516 ± 0.022	0.412 ± 0.006	0.509 ± 0.006		
PL-SVM-PLCP	0.081 ± 0.011 $ullet$	$0.688\pm0.029ullet$	0.468 ± 0.025 (• 0.607 ± 0.023 •	0.526 ± 0.005 $ullet$	$0.609\pm0.002ullet$		
PL-KNN	0.036 ± 0.006	0.300 ± 0.018	0.393 ± 0.014	0.454 ± 0.016	0.492 ± 0.003	0.368 ± 0.004		
PL-KNN-PLCP	0.076 ± 0.009 $ullet$	0.662 ± 0.025 $ullet$	0.469 ± 0.016 (• 0.607 ± 0.023 •	$0.523\pm0.004ullet$	$0.593\pm0.004ullet$		
Improvement: PI	L-CL: 3.61% PL	AGGD: 5.10 %	SURE: 12.24 %	LALO: 4.01 % PL	<i>L</i> -SVM: 39.26 %	PL-KNN: 53.98 %		

Comparison with Deep-learning Based Methods:

Approaches		CIFAR-10	CIFAR-100		
Approaches	q = 0.1	q = 0.3	q = 0.5	q = 0.01	q = 0.05
PICO	$94.39 \pm 0.18~\%$	$94.18 \pm 0.12~\%$	$93.58 \pm 0.06~\%$	$73.09 \pm 0.34~\%$	72.74 ± 0.30
PICO-PLCP	$94.80\pm0.07~\%$ $ullet$	$94.53\pm0.10~\%\bullet$	93.67 ± 0.16 % $ullet$	$73.90\pm0.20~\%$ $ullet$	73.51 ± 0.21
Fully Supervised	\mathcal{B} : 94.91 \pm 0.	07 % \mathcal{B} -PLCP:	$95.02 \pm 0.03~\%$	$B: 73.56 \pm 0.1$	0% <i>B</i> -PLCI
PRODEN	$89.12 \pm 0.12~\%$	87.56 ± 0.15 %	$84.92 \pm 0.31~\%$	63.36 ± 0.33 %	60.88 ± 0.35
PRODEN-PLCP	$89.63\pm0.15~\%$ •	$88.19\pm0.19~\%\bullet$	85.31 ± 0.31 % •	$64.20\pm0.25~\%$ $ullet$	61.78 ± 0.29
Fully Supervised	$B: 90.03 \pm 0$.13 % <i>B</i> -PLCP:	$90.30 \pm 0.08~\%$	$\mathcal{B}: 65.03 \pm 0.3$	B5% <i>B</i> -PLC

Ablation Study:

Kernel	Karnal	Dortnor	Dlur		Data set				
	Faturei	Diui	FG-NET	Lost	MSRCv2	Mirflickr	Soccer Pla		
	P	L-AGGD		0.063 ± 0.010	0.690 ± 0.020	0.451 ± 0.023	0.610 ± 0.012	0.521 ± 0.0	
	Х	P	×	$0.073 \pm 0.011 \bullet$	$0.698 \pm 0.023 \bullet$	$0.380 \pm 0.013 \bullet$	$0.542 \pm 0.013 \bullet$	0.492 ± 0.0	
	\checkmark	P	×	$0.073\pm0.006ullet$	$0.721 \pm 0.024 \circ$	0.471 ± 0.016 •	$0.664\pm0.012\bullet$	0.521 ± 0.0	
	\checkmark	0	\checkmark	$0.071\pm0.001\bullet$	$0.721\pm0.004\circ$	$0.470\pm0,020$ $ullet$	$0.663 \pm 0.011 \bullet$	0.522 ± 0.0	
-	\checkmark	P	\checkmark	0.076 ± 0.010	0.717 ± 0.020	0.473 ± 0.017	0.668 ± 0.014	0.534 ± 0.0	

Sensitivity Analysis:

