

Tendency-driven Mutual Exclusivity for Weakly Supervised Incremental Semantic Segmentation

Chongjie Si, Xuehui Wang, Xiaokang Yang, Wei Shen MoE Key Lab of Artificial Intelligence, Al Institute, Shanghai Jiao Tong University

Introduction

Task: Weakly incremental learning for semantic segmentation (WILSS), the initial training of a segmentation model takes place on a set of classes with pixel-level annotations. In the following incremental phases, WILSS shifts its focus exclusively to the utilization of image-level labels for new classes, without access to the old data.

Contradiction:

- A pixel's label is predicted as belonging to an old class by the previous segmentation model but is simultaneously predicted as a new class by the seed area in the incremental phases.
- With only image-level labels available for the new classes, a formidable conundrum arises in determining whether this pixel's true label corresponds to the new classes or not.

Motivation:

• How might we generate high-quality pseudo pixel-level labels for the new classes to address this conflict issue?

Contributions:

- We propose a novel tendency-driven relationship of mutual exclusivity in WILSS, which effectively mitigates the conflict of the predictions generated by the pre-trained model and the seed areas.
- We propose a TME constrained bi-level optimization problem, through which we can simultaneously generate pixel-level pseudo labels for all classes and update the model parameters.
- sExtensive experiments show that Teddy significantly outperforms state-of- the-art approaches in existing scenarios and data sets, establishing new benchmarks.

Framework:

Pipeline:

A novel tendency-driven relationship of mutual exclusivity is proposed to regulate the interactions between the predictions produced by the seed areas and the previous model. Moreover, by solving a TME constrained bi-level optimization problem, we can generate pixel-level pseudo labels for all classes and update model parameters simultaneously.

Loss:

$$\begin{aligned} \min_{\boldsymbol{\theta}^{t},\mathbf{U},\mathbf{V}} \quad \mathcal{L}(\boldsymbol{\theta}^{t}|\boldsymbol{\theta}^{t-1};(\mathbf{x}^{t},\mathbf{y}^{t})) &= \mathcal{L}_{cls} + \mathcal{L}_{loc} + \mathcal{L}_{seg} \\ \text{s.t.} \quad \|R(f_{\boldsymbol{\theta}^{t-1}}(\mathbf{x}^{t}),\alpha)_{i}\| + \|\delta(S(\mathbf{x}^{t},\mathbf{y}^{t}))_{i}\| \leq 1, \\ \forall i = (h,w) \in \mathcal{I}. \end{aligned}$$

Method

Experiment

Main Performance:

		Single-step									Multi			
Method	Sup	15	-5 VC	C	10-	10 V	OC	COC	CO-to-	VOC	10	-2 VC)C	
		1-15	16-20	All	1-10	11-20	All	1-60	61-80	All	1-10	11-20	All	
FT	Р	12.5	36.9	18.3	7.8	58.9	32.1	1.9	41.7	12.7	-	-	-	
LWF [34]	Р	67.0	41.8	61.0	70.7	63.4	67.2	36.7	49.0	40.3	-	-	-	
LWF-MC [47]	Р	59.8	22.6	51.0	53.9	43.0	48.7	-	-	-	-	-	-	
ILT [41]	Р	69.0	46.4	63.6	70.3	61.9	66.3	<u>37.0</u>	43.9	39.3	-	-	-	
CIL [30]	Р	14.9	37.3	20.2	38.4	60.0	48.7	-	-	-	-	-	-	
MiB [8]	Р	75.5	49.4	69.0	70.4	63.7	67.2	34.9	47.8	38.7	-	-	-	
PLOP [16]	Р	<u>75.7</u>	51.7	70.1	69.6	62.2	67.1	35.1	39.4	36.8	-	-	-	
SDR [42]	Р	75.4	52.6	69.9	70.5	63.9	67.4	-	-	-	-	-	-	
RECALL [39]	Р	67.7	54.3	65.6	66.0	58.8	63.7	-	-	-	-	-	-	
CAM [62]	Ι	69.9	25.6	59.7	70.8	44.2	58.5	30.7	20.3	28.1	-	-	-	
SEAM [56]	Ι	68.3	31.8	60.4	67.5	55.4	62.7	31.2	28.2	30.5	-	-	-	
SS [3]	Ι	72.2	27.5	62.1	69.6	32.8	52.5	35.1	36.9	35.5	-	-	-	
EPS [32]	Ι	69.4	34.5	62.1	69.0	57.0	64.3	34.9	38.4	35.8	-	-	-	
WILSON [7]	Ι	74.2	41.7	67.2	70.4	57.1	65.0	39.8	41.0	40.6	38.7	22.4	32.5	
Teddy	Ι	77.6	51.4	72.0	71.2	59.4	66.5	40.6	41.8	41.5	50.3	32.0	43.1	1
Joint	Р	75.5	73.5	75.4	76.6	74.0	75.4	-	-	-	-	-	-	

Ablation Study:

Row	ı	TME	\mathbf{PF}	15-5 VOC			10-10 VOC			10-2 VOC		
	OB	w/o OB		1-15	16-20	All	1-10	11 - 20	All	1-10	11 - 20	All
1				74.1	41.5	67.0	70.4	57.0	65.0	38.8	22.3	32.5
2			\checkmark	75.2	45.6	68.9	70.7	57.5	65.3	47.7	20.1	34.6
3		\checkmark		76.8	46.0	70.1	71.0	58.6	66.0	50.2	23.7	38.5
4	\checkmark			77.0	47.7	70.7	71.2	58.6	66.2	50.0	27.5	40.8
5		\checkmark	\checkmark	76.5	48.1	70.4	71.1	58.5	66.1	51.4	25.2	39.9
6	\checkmark		\checkmark	77.6	51.4	72.0	71.2	59.4	66.5	50.3	32.0	43.1

From left to right: image, WILSON, Teddy, GT

